R1-Reasoning-RAG:将 DeepSeek-R1的推理与Tavily搜索相结合,以实现递归RAG工作流。

R1-Reasoning-RAG是什么?

R1-Reasoning-RAG 是一种基于 LangGraph 构建,给合了DeepSeek R1 推理模型 和 Tavily 搜索的框架,以实现递归 RAG 工作流。这个框架能从知识库里智能地检索、筛选和整合信息,用来全面回答复杂的问题。

R1-Reasoning-RAG.jpg

R1-Reasoning-RAG核心特点

  • 深度推理与知识检索结合:DeepSeek R1有很强的推理能力,它用链式思考来处理查询和检索到的信息,这样就能给出更准确、和上下文联系更紧密的回答。同时,RAG框架能从外部知识库找最新的数据,让回答又准又有时效性。

  • 递归式RAG:这个框架支持递归式的RAG流程。碰到复杂问题时,模型可以多次去检索和筛选信息,一点一点把完整答案构建出来。

  • 无需额外重排步骤:DeepSeek R1在推理的时候,能直接给检索到的信息打分、确定优先级,不用再有额外的重排操作。

  • 高效的知识库构建:构建知识库时,要把文档分块,把语义表示成嵌入形式,然后把这些嵌入向量存到高效的向量数据库里,像FaiSS或者ChromaDB都可以。

R1-Reasoning-RAG:结合了 DeepSeek R1 推理模型 和 (RAG) 的先进框架.webp

R1-Reasoning-RAG应用场景

  • 复杂问题回答:在需要深度推理、综合多源信息的场景里都能用,比如法律文档检索、当科研助理、做复杂决策支持等。

  • 智能体系统:对那些需要推理和评估步骤的智能体系统很有帮助,能提升处理复杂任务的决策能力。

技术栈与开源

  • 开源实现:R1-Reasoning-RAG的代码已经开源了,是基于LangChain构建的,里面有LLM、Prompts和Agent这三个脚本。

  • 技术栈:用了FAISS这样的开源工具和Hugging Face模型,能快速推理,部署起来也高效。

R1-Reasoning-RAG优势

  • 精准推理:DeepSeek R1的推理能力让RAG框架处理复杂问题时,又准又能深入。

  • 高效性能:检索和推理流程经过优化,生成回答花的时间少了,计算成本也降低了。

R1-Reasoning-RAG把DeepSeek R1的推理能力和RAG的检索能力结合起来,在回答复杂问题上又高效又精准。在法律、科研、智能体这些领域都有很大的应用潜力 。

GitHub 仓库地址:https://github.com/deansaco/r1-reasoning-rag

收藏
最新工具
选品酷BigTracker
选品酷BigTracker

一款由BQool比酷尔科技公司开发的专为寻找亚马逊爆款的卖家量身...

云知改写
云知改写

一个基于先进深度语义分析、智能 AI 及文本处理技术开发的论文查...

Remove.photos
Remove.photos

一款免费的图片背景去除工具,能 00% 自动在3秒内去除图片背景...

VideoIdeas Ai
VideoIdeas Ai

一个为 YouTube博主量身定制的视频内容生成工具。它能在短时...

OnePPT
OnePPT

一款创新型AIPPT智能生成工具,提供智能写作、PPT生成、模板...

Hugo
Hugo

一个使用 Go 语言开发的开源静态网站生成器,速度快,灵活性高。...

企鹅读伴
企鹅读伴

腾讯SSV数字支教实验室推出的AI阅读教育产品,由腾讯混元大模型...

Krillin AI
Krillin AI

一款本地的视频翻译、配音和语音克隆的工具,适用于哔哩哔哩、小红书...

Lovart AI
Lovart AI

一个全球首个适用于设计目的的自适应设计AI智能体平台,能将创意转...

ByeCode
ByeCode

一个新一代AI无代码开发平台,通过可视化拖拽组件,用户无需编码即...